Tame Problems and wicked problems

The clear definition of the problem also unveils the solution.
The solution is determined according to criteria revealing the degree of effect— goal is achieved fully or partially, outcome is true or false.

Systems are difficult to work with, and seeing things for what they are is an essential first step.  Horst Rittel in the late 1960s distinguished between “tame” and “wicked” problems.  This is not the distinction between easy and hard problems—many tame problems are very hard.  But wicked problems, while not evil, are tricky and malicious in ways that tame problems are not.  The unexpected consequences we’ve seen have been because systems problems are wicked.  We will understand systems better—and why they spawn unexpected consequences—if we understand a little more of the properties of wicked problems and approach them with appropriate respect.


Tame problems can be clearly stated, have a well-defined goal, and stay solved.  They work in a Newtonian, clockwork way.  The games of chess and go are tame.  Wicked problems have complex cause-and-effect relationships, human interaction, and inherently incomplete information.  They require compromises.

For example, mass transit is a wicked problem.  Everyone likes mass transit—unless it comes through their neighborhood, it consumes road lanes, or they have to pay for it.  The difference between something that works in the lab, on paper, or in one’s head versus something that works in the real world and is practical to real people is a characteristic only of wicked problems.

Tame and wicked problems differ in many ways.*  See if the traits of wicked problems as described below sound familiar, either with the examples mentioned here or with situations you have experienced yourself.

  • Problem Definition.  A tame problem can be clearly, unambiguously, and completely stated.  Math problems are tame.  By contrast, there is no absolute statement of a wicked problem.  To state a wicked problem means to also state its solution.  That is, the problem can’t be stated without a proposed solution in mind, and coming up with a new solution means seeing the problem in a new way.  Avoid locking in a problem definition too soon.
  • Goal.  A tame problem has a well-defined goal, such as the QED in a proof or the checkmate in chess.  With a wicked problem, you could keep iterating and refining your solution forever—or go back and consider other solutions.  After all, if a wicked problem is something you can’t define, how can you tell when it’s resolved?  You don’t stop because you’re done (you’ve reached the goal) but rather because of external constraints (you’ve run out of money, time, or patience, for example).  You must strive for an adequate solution, not a perfect one.
  • Solutions.  Solutions are unambiguously correct or incorrect with tame problems.  The solution to a wicked problem is not judged as correct or incorrect but somewhere in the range between good and bad.
  • Time.  The solution to a tame problem can be judged immediately (that is, there is no maturation time), and the problem stays solved.  Euclid’s geometry proofs are still valid today.  Evaluating the solution to a wicked problem takes time (because the results of implementing the solution take time to be appreciated) and is subjective.  Is that a good design?  Maybe, but maybe not.  Like the response to art, different people will have different answers, and the solution causes many side effects (unintended consequences), like medicine in the body.  Additionally, a “solved” wicked problem may not stay solved—wicked problems aren’t solved but are only addressed; they’re treated, not cured.  Your perception of how good the solution is may change over time.
  • Consequences.  Trial and error may be an inefficient approach with a tame problem, but it won’t cause any damage.  Implementing or publicizing a proposed solution doesn’t change the problem.  With a wicked problem, however, every implementation changes reality—it’s no longer the same problem after an attempted solution.  After a failed attempt, the solution you realize you should have tried may now not work.
  • Reapplying Past Solutions.  A class of tame problems can be solved with a single principle.  A general rule for finding a square root or applying the quadratic formula will work in all applicable cases.  By contrast, the solution to a wicked problem is unique.  We can learn from past successes, but an old solution applied unchanged to a new problem won’t produce the old result.  Many unexpected consequences arise when we rush to reapply (without customization) a particular solution we’ve seen before—there will likely be unseen differences between the old and new problems.
  • Problem Hierarchy.  A tame problem stands alone.  It is never a symptom of a larger problem, but a wicked problem always is.  For example, if the cost of something is too high, this can be a symptom of the higher-level problem that the company doesn’t have enough money.  Often, we can’t see the higher-level problem (“This new software is terrific!  I can’t imagine what could be better.”).

Critical problems require a different approach. Because these problems threaten the very survival of the organisation in the short term, decisive action is called for, and people are required to follow the call for action in a highly disciplined way. In the absence of time to do a detailed, objective analysis for cause, solutions may be adopted that are based on causes that are assumed to be valid. But a partially successful response is better than standing by idly as the organisation expires. A not-uncommon critical problem is a company running out of funds to support its continuing existence. With this type of problem a ‘leader’ takes charge, often using an authoritarian command and control style.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s